Consistency Based Attribute Reduction
نویسندگان
چکیده
Rough sets are widely used in feature subset selection and attribute reduction. In most of the existing algorithms, the dependency function is employed to evaluate the quality of a feature subset. The disadvantages of using dependency are discussed in this paper. And the problem of forward greedy search algorithm based on dependency is presented. We introduce the consistency measure to deal with the problems. The relationship between dependency and consistency is analyzed. It is shown that consistency measure can reflects not only the size of decision positive region, like dependency, but also the sample distribution in the boundary region. Therefore it can more finely describe the distinguishing power of an attribute set. Based on consistency, we redefine the redundancy and reduct of a decision system. We construct a forward greedy search algorithm to find reducts based on consistency. What’s more, we employ cross validation to test the selected features, and reduce the overfitting features in a reduct. The experimental results with UCI data show that the proposed algorithm is effective and efficient.
منابع مشابه
Consistency-preserving attribute reduction in fuzzy rough set framework
Attribute reduction (feature selection) has become an important challenge in areas of pattern recognition, machine learning, data mining and knowledge discovery. Based on attribute reduction, one can extract fuzzy decision rules from a fuzzy decision table. As consistency is one of several criteria for evaluating the decision performance of a decision-rule set, in this paper, we devote to prese...
متن کاملVariable-precision dominance-based rough set approach and attribute reduction
In this paper, a variable-precision dominance-based rough set approach (VP-DRSA) is proposed together with several VP-DRSA-based approaches to attribute reduction. The properties of VP-DRSA are shown in comparison to previous dominance-based rough set approaches. An advantage of VP-DRSA over variable-consistency dominance-based rough set approach in decision rule induction is emphasized. Some r...
متن کاملQuick Attribute Reduction Based on Approximation Dependency Degree
Attribute reduction is one of the core research content of Rough sets theory. Many existing algorithms mainly are aimed at the reduction of consistency decision table, and very little work has been done for attribute reduction aimed at inconsistency decision table. In fact, the methods finding Pawlak reduction from consistent decision table are not suitable for inconsistency decision table. In ...
متن کاملUsing logical formulas to improve the expressiveness of Relational Attribute Grammars
Considering the theory of attribute grammars, we use logical formulas instead of traditional functional semantic rules. Following the decoration of a derivation tree, a suitable algorithm should maintain the consistency of the formulas together with the evaluation of the attributes. This may be a Prolog-like resolution, but this paper examines a somewhat different strategy, based on production ...
متن کاملWater Quality Assessment in the Harbin Reach of the Songhuajiang River (China) Based on a Fuzzy Rough Set and an Attribute Recognition Theoretical Model
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007